Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Type of study
Language
Document Type
Year range
1.
Expert Opin Drug Discov ; 18(3): 247-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2222435

ABSTRACT

INTRODUCTION: Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED: Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION: Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism
2.
Heliyon ; 8(7): e09910, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2000432

ABSTRACT

The first cases of the novel coronavirus, SARS-CoV-2, were detected in December 2019 in Wuhan, China. Nucleotide substitutions and mutations in the SARS-CoV-2 sequence can result in the evolution of the virus and its rapid spread across the world. Therefore, understanding genetic variants of SARS-CoV-2 and targeting the conserved elements responsible for viral replication have great benefits for detecting its infection sources and diagnosing and treating COVID-19. In this study, we used the SARS-CoV-2 sequence isolated from a 59-year-old man in Ardabil, Iran, in April 2020 and sequenced using Oxford Nanopore technology. A meta-analysis comparing the sequence under study with other sequences from Iran indicated long nucleotide insertions/deletions (indels) that code for NSP15, the NSP14-NSP10 complex, open reading frame ORF9b, and ORF1ab polyproteins. In addition, replicating the NSP8 protein in the study sequence is another topic that can affect viral replication. Then using the DNA structure of NSP8, NSP15, NSP14-NSP10 complex, and ORF1ab as a genetic target can help find drug-like compounds for COVID-19. Potential drug-like compounds reported in this study for their mechanism of action and interactions with SARS-CoV-2 genes using drug repurposing are resveratrol, erythromycin, chloramphenicol, indomethacin, ciclesonide, and PDE4 inhibitor. Ciclesonide appears to show the best results when docked with chosen viral proteins. Therefore, different proteins isolated from nucleotide mutations in the virus sequence can indicate distinct inducers for antibodies and are important in vaccine design.

SELECTION OF CITATIONS
SEARCH DETAIL